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A B S T R A C T   

The expected crash frequency is the long-term average crash count for a specific site. It is extensively used to 
systematically evaluate the crash risk associated with roadway elements. To estimate the expected crashes, the 
Empirical Bayesian (EB) approach is typically employed. The EB method is a computationally convenient 
approximation to the Full Bayesian (FB) method, which gained popularity due to its simple interpretation, 
computational efficiency, and the ability to account for the regression to the mean bias. However, the common 
EB method used in traffic safety analysis is only applicable when the traditional Negative Binomial (NB) model is 
used. The NB model, however, is not appropriate when data is highly dispersed, skewed, or has a large number of 
zero observations. The Negative Binomial-Lindley (NB-L) model is a mixture of the NB and Lindley distributions 
and has shown superior fit compared to the NB model, especially when the dataset is characterized by excess zero 
observations. Even though several studies have used the NB-L in developing crash prediction models, the 
application of the NB-L in other safety-related tasks (e.g., hot spot identification) is largely neglected. This study 
proposed a framework to develop the EB method for the NB-L model and subsequently estimate the expected 
crash values.A comparison between the EB and FB estimates was performed to validate the approximation 
framework in general. The results indicated that the proposed EB framework is able to estimate expected crashes 
with comparable precision to the FB estimate, but with much less computational cost. In addition, a site ranking 
analysis using the EB estimates was conducted to validate the proposed approximation method in safety studies. 
However, it should be noted that any other type of safety analysis that requires access to the expected crashes can 
benefit from the proposed EB method. This study concluded that the proposed EB framework can properly 
approximate the underlying FB approach and can reasonably be considered as an alternative to the traditional EB 
formula derived from the NB model. The results of this study can help to extend the application of the advanced 
predictive models beyond predicting crashes to other safety-related tasks, with no additional computational 
efforts.   

1. Introduction 

The roadway safety management process involves multiple steps that 
are designed to monitor and reduce crash frequencies on existing 
roadways (Part, 2010). Of these steps, hot spot identification and safety 
effectiveness evaluation are two key approaches in safety evaluation and 
analysis. Hot spot identification identifies sites that can benefit the most 
from safety treatments. Safety effectiveness evaluation (e.g., before-after 
analysis, cross-sectional analysis) evaluates how safety has changed 

because of one or more specific treatments implemented to reduce the 
crashes. Both analyses require reliable and stable measures to quanti-
tatively evaluate the crash risk associated with a roadway entity in a 
certain time period. There are three main steps associated with each of 
the aforementioned analyses. The first step involves developing a crash 
prediction model (also referred to as crash-frequency model). Crash 
prediction models are the main tool to predict crash frequencies and 
identify crash contributing factors. In the second step, the crash pre-
diction models are used to assess the crash risk associated with each 
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roadway element. The evaluated crash risk then can be used to deter-
mine the likelihood of crash occurrence for each specific site, as a 
function of site characteristics (i.e., explanatory variables), in a certain 
time period. The final step involves ranking the sites in decreasing order 
based on the assessed crash risk (in case of hot spot identification), or 
determining the efficacy of the countermeasure(s) given the assessed 
crash risk before and after implementing the treatment. 

The Negative Binomial (NB) is the most common statistical model to 
develop crash prediction models and estimate crash frequencies (Lord 
et al., 2021; Lord and Mannering, 2010; Mannering and Bhat, 2014). As 
opposed to the Poisson distribution which assumes the mean and vari-
ance of crash observations are equal, the NB distribution allows the 
variance of the response variable to be greater than the mean by using an 
additional parameter (referred to as over-dispersion parameter). 
Although research studies showed that the NB model addresses over 
dispersion commonly observed in crash data, this model does not 
necessarily account for issues related to other unique characteristics of 
crash data. In particular, crash datasets are often characterized by excess 
zero observations or low sample mean. The NB distribution is not flex-
ible enough to deal with abundance of zero observations in the data 
(Geedipally et al., 2012). In addition, the NB model will output biased 
results as the sample mean goes lower (Lord, 2006). Different statistical 
models have been proposed by safety researchers to overcome limita-
tions of the NB model. Poisson log-normal (Song et al., 2006; Park and 
Lord, 2007; Khazraee et al., 2018; Shirazi and Lord, 2019), Poisson- 
generalized inverse Gaussian (Zha et al., 2016; Zou et al., 2013), 
Conway-Maxwell-Poisson (Lord et al., 2010; Abdella et al., 2019), 
Semiparametric NB model (Shirazi et al., 2016), Poisson-Tweedie 
(Debrabant et al., 2018; Saha et al., 2020), Generalized Additive 
Models (Xie and Zhang, 2008), and Negative Binomial-Lindley (NB-L) 
(Zamani and Ismail, 2010; Lord and Geedipally, 2011; Geedipally et al., 
2012; Shirazi et al., 2017; Shaon et al., 2018; Khodadadi et al., 2021) are 
just a few examples of advanced count models developed over time to 
overcome or alleviate the limitations of the NB model. NB-L in particular 
is the subject of interest in this study. The NB-L model is a mixture of the 
negative binomial and Lindley distribution. This model was first pro-
posed by Zamani and Ismail (2010), and then used in multiple research 
fields dealing with sparse count data modeling including crash data 
analysis (Lord and Geedipally, 2011; Geedipally et al., 2012; Shaon 
et al., 2018; Khodadadi et al., 2021). The NB-L model offers extra flex-
ibility using the Lindley distribution, resulting in a more powerful tool to 
fit to crash datasets (Shirazi et al., 2016). In particular, compared to the 
traditional NB models, the NB-L shows a better fit when a crash dataset 
contains many zero responses, or exhibits high dispersion, large skew-
ness or long tail (Shirazi et al., 2017). 

The three steps mentioned above (i.e., developing crash prediction 
model, crash risk evaluation, and ranking/before-after analysis based on 
the evaluated crash risk) have been fully investigated for the well-known 
NB model. However, despite the superiority of the NB-L, no study has 
examined the application of the NB-L distribution or its generalized 
linear model (GLM) beyond the first step (predicting crashes). This study 
fills this research gap by deriving the equations to estimate the expected 
crash frequency for the NB-L model based on Full Bayesian (FB) and 
Empirical Bayesian (EB) framework. Therefore, the primary objectives 
of this study are to (1) develop an EB framework to calculate the ex-
pected crash values for the NB-L models, (2) compare the EB and FB 
expected values to determine if the proposed EB framework properly 
approximates the underlying FB paradigm, and (3) test the application 
of the NB-L and its EB estimates of the expected crashes in other safety- 
related analyses (site ranking in this study) to ensure the applicability of 
the proposed framework. 

2. Background 

The NB-L distribution has been used by researchers in various fields, 
including safety analysis (crash prediction models). Lord and Geedipally 

(2011) examined the application of the NB-L distribution in highway 
safety. They applied both the NB and NB-L distributions to simulated 
and empirical sparse datasets. They found that the NB-L outperforms the 
traditional NB distribution. To extend the application of NB-L in safety 
analysis, Lord et al. (2012) introduced a generalized linear NB-L model 
(NB-L GLM) to link the crash frequencies to the site characteristics. The 
regression approach has been employed in numerous transportation- 
related studies to estimate the relationships between the response var-
iable and influential factors (Safaei et al., 2021b; Rostami et al., 2020; 
Aman et al., 2021; Aman and Smith-Colin, 2020; Safaei et al., 2021a; 
Asgharpour et al., 2021). Lord et al. (2012) observed that the NB-L GLM 
provides a better fit compared to the traditional NB GLM when 
analyzing a sparse or highly-dispersed dataset. Given the superiority of 
the NB-L over the traditional count models, different parameterizations 
of the NB-L model have been proposed, discussed, and applied in the 
literature. Two-parameters NB-L (Zamani and Ismail, 2010), three- 
parameters NB-L (Denthet et al., 2016), four-parameters NB-L (Tajud-
din et al., 2020), Negative Binomial weighted-Lindley (NB-WLindley) 
(Khodadadi et al., 2022), and Negative Binomial-Lindley with different 
variance and dispersion structure (Khodadadi et al., 2021) are a few 
examples of the more advanced and more complex count models that are 
recently proposed to provide even greater flexibility to the original NB-L 
model. 

Sometimes crash risk is quantified by criteria such as short-term 
crash frequency, crash rate, crash severity, or crash cost (Miaou and 
Song, 2005; Huang et al., 2009; Guo et al., 2020); however, ignoring the 
influential crash factors (e.g., Annual Average Daily Traffic, roadway 
characteristics) could make these methods inefficient. In addition, the 
uncertainty associated with using the raw crash data could reduce the 
accuracy of the results, especially for long-term planning processes. The 
limitations associated with using the historical crash records alone led 
the researchers and transportation agencies to develop statistical ap-
proaches to more accurately predict the crash risk (i.e., expected crash 
risk); they then used these approaches to rank the sites by the magnitude 
that their estimated crash risk exceeded the normal crash risk, which is 
estimated using sites with similar characteristics (Huang et al., 2009). 
The expected crash frequency is the long-term average crash count for a 
specific site. Considering the expected number of crashes in hot spot 
identification can overcome or minimize issues such as the regression- 
to-the-mean (RTM) bias (Hauer, 1997) or limited sample size (Miaou 
and Lord, 2003). Furthermore, given that the expected crash frequency 
uses both observed crash data and the number of crashes estimated from 
a crash prediction model, it can also account for the fundamentally non- 
linear relationship between the crash frequency and explanatory vari-
ables, the unobserved heterogeneity among the sites (Lord and Man-
nering, 2010), and the uncertainty associated with parameters of the 
underlying regression model (Miaou and Lord, 2003). The FB and EB are 
the two methods that are applied to estimate the expected crash fre-
quencies. The FB method requires access to the hierarchical represen-
tation of the underlying predictive model in order to draw random 
samples from the posterior distribution of the parameters of interest. The 
hierarchical representation of Bayesian models makes the FB approach 
more flexible than other methods since it eliminates the need for the 
closed form representation of the model. Hierarchical models are 
frequently used in crash data analysis. One of the main advantages of the 
hierarchical models is the ability to incorporate relevant prior knowl-
edge and common beliefs about the parameters into the modeling pro-
cess in a natural probabilistic way. The FB method has broadly been 
used in various safety-related analyses such as estimating crash predic-
tion models, before-and-after studies, and hot spot identification (Guo 
et al., 2019; Farid et al., 2017; Aguero-Valverde and Jovanis, 2009; 
Miaou and Song, 2005; Miranda-Moreno et al., 2013; Shirazi et al., 
2017; Lan and Persaud, 2011; Persaud et al., 2010; Pu et al., 2020). 

Despite the broad applications of the FB approach, this method is 
often computationally intensive. In particular, for complex models 
involving a large number of observations and many variables, the FB 
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method can be a time-consuming task due to the integration over the 
distribution of many parameters. Furthermore, the FB approach requires 
consideration of a prior distribution on all the unknown parameters. 
However, finding a well-reasoned and well-defined prior distribution for 
the problem in hand could be quite challenging. The EB method is a 
promising alternative to the standard FB paradigm. The EB approach is a 
special case of the general FB framework when some assumptions are 
simplified. Unlike the FB method where each parameter is defined as a 
random variable, the EB approach assumes that the parameters in the 
highest level of hierarchy are known without any uncertainty (Huang 
et al., 2009). The EB method could be thought of a computationally 
convenient approximation to the FB method, and has gained popularity 
among the safety analysts and transportation agencies due to its simple 
interpretation, computational efficiency, and the ability to account for 
the RTM bias (Miaou and Lord, 2003; Huang et al., 2009; Persaud et al., 
2010; Khattak et al., 2018; Das et al., 2019). Despite the fact that the EB 
method is a reliable method to estimate the expected crash risks, it is just 
an approximation to a more general FB paradigm. First of all, the EB 
method does not account for the uncertainty embedded in the parame-
ters. Parameters of the crash prediction model are estimated from the 
observed crash data which are naturally subjected to uncertainty. 
Ignoring these uncertainties might lead to overestimating the precision 
and/or less accurate estimates (Miaou and Lord, 2003). Secondly, the EB 
method might be criticized for a double usage of the data (Huang et al., 
2009; Hauer, 1997). In an ideal EB procedure, two sources of data 
should be used. One source is to develop the crash prediction model and 
get the predicted crash values, and another is to independently enrich 
the model with prior knowledge. However, in practice, the safety per-
formance functions (SPF) are obtained from the recorded crash fre-
quency and thus both predicted crash frequency and observed crash 
frequency are derived from the same source of information. Despite 
these limitations, the EB expected crash frequency is a good approxi-
mation for the expected values derived from the FB method as it still 
accounts for the RTM, can refine the predicted mean of an entity (Zou 
et al., 2013), and yields similar estimates as FB estimates with compa-
rable precision but less computational cost. All these confirm that the EB 
approach is a proper, yet less expensive alternative compared to the FB 
method. 

The EB method has been used for the NB model where the expected 
crash frequency is defined as a linear combination of the predicted crash 
frequency (derived from the SPF model) and the observed crash fre-
quency (Hauer et al., 2002). Similarly, the EB procedure proposed in the 
highway safety manual (HSM) is only applicable when the traditional 
NB model is being used. As mentioned earlier, different extensions of the 
NB model have been introduced to deal with problematic characteristics 
of crash data. As these extensions get more complex and go deeper in the 
hierarchy, the EB procedure becomes harder to implement as the closed 
form of such distributions are unavailable or hard to compute analyti-
cally. Consequently, there is a clear need to examine the application of 
the EB method when more advanced models are being used. To this end, 
some studies attempted to translate the EB framework for more complex 
models such as Sichel (Zou et al., 2013) or finite mixture NB (Zou et al., 
2018). 

In terms of ranking procedures, generally, there are two types of 
ranking approaches, naive ranking and model-based ranking (Huang 
et al., 2009). The naive ranking method uses the raw crash data to make 
an ordered list of sites for hot spot identifications. The model-based 
ranking approaches, however, take the expected crash values as an 
indication of the crash risk (Huang et al., 2009). The expected crash 
values are extensively used to sort a list of roadway entities. However, 
the obtained sorted list could potentially differ among the ranking 
criteria since they are based on different measures and logics. Several 
model-based ranking criteria for hot spot identification have been 
investigated in the literature to better represent the stochastic nature of 
the crash data. Many studies have recommended ranking sites based on 
the FB or EB expected value of the Poisson mean, and they concluded 

that the use of posterior Poisson mean would result in a more reliable 
and more accurate order compared to the naive ranking criteria (Guo 
et al., 2019; Lee et al., 2019; Meng et al., 2020; Lan and Persaud, 2011). 
In the same token, Shen and Louis (1998) discussed that the posterior 
Poisson mean is an optimal choice when inferences about the expected 
crashes are of interest. However, it might perform poorly if the rank of 
the expected crashes is the subject of interest. Consequently, some 
studies have attempted to directly take uncertainties in rankings into 
considerations and employed a Bayesian framework in ranking criteria 
as well (Laird and Louis, 1989; Miaou and Song, 2005; Liu and Sharma, 
2018; Shen and Louis, 1998). The posterior ranking criteria (e.g., pos-
terior expected, mode, or median rank) takes all posterior simulations 
into account for each site’s crash risk (not only the posterior mean), and 
then outputs a ranked list of sites for each simulation run, accordingly. 
In a comparison study between the EB and FB approach for hot spot 
identification, Lan and Persaud (2011) explored eight different ranking 
criteria including posterior expected, posterior mode, and posterior 
median ranking. The authors concluded that, in general, the posterior 
rank criteria would perform better than other model-based and naive 
ranking methods. Similar results were observed in the study done by 
Laird and Louis (1989). They also concluded that the posterior distri-
bution of a parameter’s rank typically carries more information about 
the true ranking in comparison to the integer rank of that parameter. 

3. Methodology 

The NB-L distribution is a mixture of the NB and the one-parameter 
Lindley distribution. The NB-L distribution offers a more flexible struc-
ture with more degrees of freedom compared to the traditional NB dis-
tribution. Different hierarchical variations of the NB-L distribution have 
been introduced and analyzed (Geedipally et al., 2012; Zamani and 
Ismail, 2010; Gomez-Deniz and Calderin-Ojeda, 2017). This study used 
the original representation developed by Zamani and Ismail (2010) and 
the generalized linear model proposed by Geedipally et al. (2012) to 
derive FB and EB procedures. Let Yi denote the crash frequency 
following an NB distribution with shape parameter, pi, and rate (or over 
dispersion) parameter, ϕ. The hierarchical expression for the NB-L 
generalized linear model (NB-L GLM) is defined as follows (Geedipally 
et al., 2012): 

Yi ∼ NB (pi,ϕ); ϕ > 0, 0 < pi < 1
pi = e− ηi

ηi ∼ Lindley (θi)

(1)  

θi = μi = eβXi

ϕ ∼ πϕ
β ∼ πβ  

where, θ is the Lindley parameter, Xi = (1,X1, X2,…Xm) is the vector 
including the contributing variables for site i, β = (β0, β1,…, βm) is the 
vector of regression coefficient to be estimated, and πϕ and πβ are the 
prior distribution for ϕ and β, respectively. 

The GLM representation in Eq.(1) was suggested by Geedipally et al. 
(2012) as an alternative to NB-L GLM, but it has not yet been used for 
modeling due to its complexity. Note that the above NB-L GLM repre-
sentation is available in closed-form. Therefore, this representation 
works well for addressing the objectives of this paper since the EB 
analysis usually requires the maximum likelihood estimates (MLE) of the 
parameters, which require access to the closed form formulation of the 
probability mass function (pmf). In the next section, the derivation of 
the expected crash values is discussed in detail for both FB and EB 
methods. 

3.1. Full Bayesian expected values 

In the FB paradigm, both parameters and hyper-parameters are 
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assumed to follow pre-defined distributions (i.e., prior distribution) 
which represent the underlying uncertainty in the parameters. The FB 
method treats all the parameters as unknown random variables and 
takes all their uncertainties into account by integrating over the prior 
distributions. In the Bayesian context, either for EB or FB methods, the 
posterior predictive distribution is used to estimate the expected crash 
values. The posterior predictive distribution represents the distribution 
of the expected data given the observed data and predictive model. The 
posterior predictive distribution for an expected data point, yexp, given 
the observed value, yobs, could be written as follows: 

p (yexp|yobs) =

∫

γ
p (yexp|γ, yobs) p (γ|yobs) dγ (2)  

where, p (yexp|γ, yobs) is the likelihood of the expected data given the 
observed data and model parameters (γ), and p (γ|yobs) is the posterior 
distribution of the parameters give the observed data. In this section, 
first we document the derivation of the posterior predictive distribution 
and the FB expected values for the NB model; then, the same procedure 
is extended to derive the FB expected crash frequencies for the NB-L 
model. 

The NB distribution itself could be re-parameterized as a continuous 
mixture of the Poisson and Gamma distributions, where the Poisson 
mean follows a Gamma distribution. The hierarchical representation of 
the NB GLM with mean, μ, and over-dispersion parameter, ϕ, could be 
written as follows: 

Yi ∼ Poisson (λi)

λi ∼ Gamma (ϕ,ϕ/μi)

μi = eβXi

(3)  

ϕ ∼ πϕ
β ∼ πβ 

Using the definition of the posterior predictive distribution in Eq.(2), 
the probability of the expected crashes, yexp, given the observed crash 
data is as follows: 

p (yexp|yobs) =

∫

λ
p (yexp|λ, yobs) p (λ|yobs) dλ (4)  

where, p (yexp|λ) ∼ Poisson (λ) and p (λ|yobs) is the posterior distribution 
of the Poisson mean, λ, which could be written as follows by definition: 

p (λ|yobs) =

∫

ϕ,β
p (λ|yobs,ϕ, β) πϕ,β d(ϕ, β) (5) 

Given Eq. (4) and Eq. (5), the Full Bayesian posterior predictive 
distribution of the NB GLM could be written as follows: 

p (yexp|yobs) =

∫

λ
p (yexp|λ, yobs)

(∫

ϕ,β
p (λ|yobs,ϕ, β) πϕ,β d(ϕ, β)

)

dλ (6) 

Let P and G denote the Poisson and Gamma distributions, respec-
tively. Given the definition of the posterior distribution, we know that: 

p (λ|yobs,ϕ, β)∝P (yobs|λ) G (λ|ϕ, β) (7) 

Therefore, given the fact that the Gamma distribution is a conjugate 
prior for the Poisson distribution, Eq.(6) could be further simplified as 
follows: 

p (yexp|yobs) =

∫

λ
P (λ)

(∫

ϕ,β
G (yobs + ϕ, 1 + ϕ

/

μ) πϕ,β d(ϕ, β)
)

dλ (8) 

Using the FB approach, instead of solving the integral or calculating 
the closed form representation, we can take the Monte Carlo Markov 
Chain (MCMC) approach to draw random samples from the posterior 
predictive distribution. The following steps describe the procedure to 
draw a random sample from the posterior predictive distribution at each 
site i:  

• Draw a random sample from the prior distributions, πβ and πϕ; then, 
calculate μi;  

• Plug in the samples from the previous step in G (y + ϕ,1 + ϕ/μi), and 
then draw a random sample from the distribution. It gives us a 
random sample from the λ’s posterior distribution;  

• Plug in the posterior λ sample from the previous step in P (λ), and 
then draw a random sample from the distribution. It gives us a 
random sample from the posterior predictive distribution of the 
crash frequency at site i. 

By repeating the hierarchical procedure described above, we can 
have the necessary samples from the posterior predictive distribution to 
estimate the expected crash frequency. For this purpose, we can use any 
measure of centrality (i.e., mode, mean, median) to average out the 
predictive distribution and achieve the expected value. Note that in the 
last step, (yexp|λ, yobs) follows a Poisson distribution. The parameter of 
the Poisson distribution shows its mean value. Therefore, by drawing 
random samples and then taking the average, we can find the condi-
tional expectation of λ given the observed data, E(λ|yobs). This means that 
if we parameterize the crash frequency as a Poisson mixture model with 
parameter λ, the posterior predictive distribution would be the same as 
the posterior distribution of λ. This concept will be useful when devel-
oping EB estimates for the NB-L GLM. 

Even though the NB-L has been discussed and documented in the 
literature, no study has yet outlined the derivation of expected crash 
values for the NB-L GLM. A similar procedure as that used in developing 
FB for NB GLM is also applicable in the case of NB-L model. Using the 
NB-L GLM formulation written in Eq.(1), the posterior predictive dis-
tribution could be expressed as follows: 

p (yexp|yobs) =

∫

η,ϕ
p (yexp|η,ϕ, yobs)p (η,ϕ|yobs) d(η,ϕ) (9) 

Putting the full posterior expression of η parameter in Eq.(9), the 
above formulation could be re-written as follows (NB denotes the NB 
distribution): 

p (yexp|yobs) =

∫

η,ϕ
NB (e− η,ϕ)

(∫

β
p (η|β, yobs) πβ d(β)

)

πϕ d(η,ϕ) (10) 

The Lindley distribution does not have any conjugate prior; hence, 
the integral above cannot be further simplified. The following procedure 
should be followed to draw random samples:  

• Draw a random sample from each prior distribution, πβ and πϕ.  
• Plug in the sample β from the previous step in p (η|βyi), and draw a 

random sample from the distribution. It gives us a random sample 
from posterior distribution of η.  

• Plug in the posterior η sample from the previous step and ϕ from the 
first step in NB (e− η,ϕ), and draw a random sample from the distri-
bution. It gives us a random sample from the posterior predictive of 
the crash frequency at site i. 

This procedure could be easily formulated and summarized in sta-
tistical software developed for MCMC analysis such as WinBUGS (Lunn 
et al., 2000), or JAGS (Plummer et al., 2016). 

3.2. Empirical Bayesian expected values 

As mentioned in the previous section, the main motivation behind 
the EB method is simplifying the computationally intensive steps of the 
FB procedure. Unlike the FB method where all the parameters are 
random variables specified by prior distributions, the EB method does 
not consider the uncertainty associated with the parameters; instead, the 
point estimate of the parameters, either maximum likelihood (MLE) or 
method of moment (MOM) estimates, is used in the highest levels of 
hierarchy. In the following, the EB approach for the NB model is 
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reviewed, and then the EB approximation for the NB-L model is 
developed. 

The three-step procedure explained for the FB analysis is simplified 
by some approximations to obtain the expected crash values in the EB 
paradigm as follows: 

Step one – Estimate the parameters of the highest level of hierarchy. 
To obtain parameter estimates ̂β and ϕ̂, closed form representation of 

the NB GLM is essential. The closed form expression of NB GLM is 
available and could be easily achieved by marginalizing λ variable out: 

p (y|ϕ, β) =
∫

λ
p (y|λ) p (λ|ϕ, β) dλ =

Γ(y + ϕ)
Γ(y + 1)Γ(ϕ)

(
ϕ

μ + ϕ

)ϕ( μ
μ + ϕ

)y

(11) 

The above expression is the pmf of the NB distribution. β̂ and ϕ̂ are 
called the marginal maximum likelihood estimates (MMLE) and could 
be simply calculated through MLE or MOM approaches. 

Step two – Derive the expected value of posterior Poisson mean. 
As mentioned before, Gamma is a conjugate prior for Poisson dis-

tribution. As a result, the posterior distribution of the Poisson mean, λ, 
given the data as well as its expected value, is available in closed form 
(Zou et al., 2018): 

p
(

λ
⃒
⃒
⃒
⃒β,ϕ, y

)

= Gamma
(

y + ϕ, 1 + ϕ
/

μ
)

E
(

λ
⃒
⃒
⃒
⃒β,ϕ, y

)

=
y + ϕ

1 + ϕ/μ =

(
μ

μ + ϕ

)

y +
(

ϕ
μ + ϕ

)

μ
(12) 

The above formula (Eq. (13)) is the known EB formula for the ex-
pected crash value, which is extensively used in safety analysis (Hauer 
et al., 2002). Finally, by plugging in β̂ and ϕ̂ from the previous step in 
Eq. (13), the EB expected crash frequency for each site is calculated. 

The outlined procedure for derivation of the EB estimates for the NB 
GLM is also applicable in the NB-L GLM. Each step is thoroughly dis-
cussed in the following: 

Step one – Estimate the parameters of the highest level of hierarchy. 
Estimating ϕ and β requires the closed form representation of the NB- 

L GLM. The hierarchical representation of the NB-L model outlined in 
Eq.(1) can be expressed in closed form by marginalizing η parameter out: 

p (y|β,ϕ) =
∫

η
p (y|ϕ, η) p (η|β) dη (13) 

Solving for the above integral would result in the pmf of the NB-L 
GLM. It follows from the pmf of the NB-L distribution which was 
developed by (Zamani and Ismail, 2010): 

p (yi|ϕ, β) =
e2βXi

1 + eβXi

(
ϕ + yi − 1

yi

)
∑yi

j=0
(− 1)j

(
yi
j

)
eβXi + ϕ + j + 1
(eβXi + ϕ + j)2 (14) 

The MLEs, β̂ and ϕ̂, could then be calculated by maximizing the 
likelihood (or log-likelihood) function. The log-likelihood function of 
NB-L GLM is given as follows: 

ll =
∑n

i=1
[log
(

ϕ + yi − 1
yi

)

+ 2(βXi) − log(1+ eβXi ) (15)  

+ log

(
∑yi

j=0
(− 1)j

(
yi
j

)
eβXi + ϕ + j + 1
(eβXi + ϕ + j)2

)

]

The first partial derivative with respect to the unknown parameters 
could be written as follows: 

∂ll
∂β

=
∑n

i=1

(

2Xi −
Xi

1 + eβXi

)

+

∑yi

j=0
(− 1)j+1

(
yi
j

)
Xi(eβXi +ϕ+j+2)
(eβXi +ϕ+j)3

∑yi

j=0
(− 1)j

(
yi
j

)
eβXi +ϕ+j+1
(eβXi +ϕ+j)2

(16)  

∂ll
∂ϕ

=
∂

∂ϕ

[
∑n

i=1
log
(

ϕ + yi − 1
yi

)]

+

∑yi

j=0
(− 1)j+1

(
yi
j

)
eβXi +ϕ+j+2
(eβXi +ϕ+j)3

∑yi

j=0
(− 1)j

(
yi
j

)
eβXi +ϕ+j+1
(eβXi +ϕ+j)2

(17) 

The first part in Eq.(17) could be re-written as follows (Klugman 
et al., 2012; Tajuddin et al., 2020): 

∂
∂ϕ
∑n

i=1
log
(

ϕ + yi − 1
yi

)

=
∑n

i=1

∑yi − 1

m=0

1
ϕ + m

(18) 

As a result, the partial derivative of the log-likelihood with respect to 
ϕ is given as: 

∂ll
∂ϕ

=
∑n

i=1

(
∑yi − 1

m=0

1
ϕ + m

)

+

∑yi

j=0
(− 1)j+1

(
yi
j

)
eβXi +ϕ+j+2
(eβXi +ϕ+j)3

∑yi

j=0
(− 1)j

(
yi
j

)
eβXi +ϕ+j+1
(eβXi +ϕ+j)2

(19) 

The above derivative equations could be simultaneously solved using 
numeric methods (gradient descend, Newton–raphson, etc.) in order to 
estimate the unknown parameters. 

Step two – Derive the expected value of posterior Poisson mean 
The hierarchical representation of the NB-L GLM defined in Eq.(1) 

does not involve the Poisson mean, λ, parameter since λ has already been 
marginalized out in the definition of the NB distribution. However, we 
can formulate the NB-L GLM as a functional of λ by breaking down the 
NB distribution to a mixture of Poisson and Gamma distribution: 

Yi ∼ Poisson (λ)

λ ∼ Gamma (ϕ,
e− ηi

1 − e− ηi
)

(20)  

ηi ∼ Lindley (θi)

θi = μi = eβXi 

Following from the above hierarchical representation, the pmf of the 
NB-L GLM could be re-written as a function of the Poisson mean, λ: 

p (y|ϕ, β) =
∫

λ
p (y|λ)

(∫

η
p (λ|ϕ, η) p (η|β) d(η)

)

dλ (21) 

Clearly, the above expression is the pmf of a Poisson mixture dis-
tribution with mixing distribution as follows: 

p (λ|ϕ, β) =
∫

η
p (λ|ϕ, η) p (η|β) d(η) (22) 

Neither the mixing distribution itself, p (λ|ϕ, β), nor its posterior 
distribution, p (λ|ϕ,β,y), can be parameterized in closed-form. Hence, we 
can’t directly calculate the posterior expectation of the Poisson mean, 
E(λ|ϕ,β,y), in the same way we did in the case of the NB model. Instead, 
we can take advantage of a useful property of the Poisson mixture dis-
tributions documented by Karlis and Xekalaki (2005) and Willmot 
(1986). Suppose Y follows a mixture Poisson distribution with pmf p (x). 
Then, the posterior moments of any order of the Poisson mean, E (λr|X =

x), could be calculated as follows: 

E (λr|X = x) =
p (x + r)

p (x)
(x+ 1)…(x+ r) (23)  

where, p (y) is the mixed Poisson pmf. 
We can use this property to calculate the posterior expectation of the 

Poisson mean when the NB-L model is being used. In the same way as 
before, let Y follow the NB-L distribution derived in Eq.(14). Then, the 
posterior expectation of the Poisson mean could be written as follows: 

E(λ|y,ϕ, β) =
p (y + 1|ϕ, β)

p (y|ϕ, β)
(y+ 1) (24)  
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=

e2βX

1+eβX

(
ϕ + y + 1 − 1

y + 1

)
∑y+1

j=0
(− 1)j

(
y + 1

j

)
eβX+ϕ+j+1
(eβX+ϕ+j)2

e2βX

1+eβX

(
ϕ + y − 1

y

)
∑y

j=0
(− 1)j

(
y
j

)
eβX+ϕ+j+1
(eβX+ϕ+j)2

(y+ 1)
(25) 

The formula in Eq.(25) can be further summarized as follows: 

E(λ|y,ϕ, β) =
A(y + 1)

A(y)
(y+ 1) (26)  

where, 

A(y) =
∑y

j=0(− 1)j
(

y
j

)
eβX+ϕ+j+1
(eβX+ϕ+j)2

=
∑y

j=0(− 1)j
(

y
j

)
μ+ϕ+j+1
(μ+ϕ+j)2 Eq.(26) can 

be used to estimate the posterior mean of λ without knowing any in-
formation about the mixing distribution or to solve for the expectation 
definition itself. The proposed EB formula is comparable with the 
famous EB formula derived for the NB model indicated in Eq. (13). 
Finally, we need to incorporate the MLEs, ϕ̂ and β̂, in Eq.(26). The 
resulting value is the desired EB expected crash value for the NB-L 
model. As observed, it does not involve any intensive computation 
(like the FB method) or solving any complex integral. The next sections 
describe the dataset used for empirical evaluation of the proposed EB 
framework as well as the implementation details. 

4. Data description 

In the previous section, the derivation of the expected crash value 
using FB and EB frameworks was discussed for the NB-L GLM. In order to 
examine the developed FB and EB frameworks, this study used two 
datasets. Both Virginia (2014–2019) and Texas (2014–2019) datasets 
represent the crash statistics of the non-federal aid system (NFAS) 
roadways discussed in Khodadadi et al. (2021b) and Das et al. (2021). 
NFAS roadways are typically characterized by lower volumes and lower 
crash frequency in comparison with other roadway functional classifi-
cations (Khodadadi et al., 2021). Consequently, many NFAS segments 
experience zero crashes. Further, there are a lot of missing data in many 
roadway characteristics (e.g., shoulder width) that could potentially be 
used as predictors. Therefore, a limited number of variables were 
available to use in the generalized linear modeling framework. How-
ever, as the emphasis of this study is to assess and compare the devel-
oped framework, using fewer variables is not an issue. The summary 
statistics of both datasets are provided in Table 1. 

5. Modeling results 

In this section, the modeling results for both NB and NB-L GLMs are 
presented, then the proposed EB procedure for NB-L GLM is examined. 
First, the EB and FB estimates of the expected crashes were compared to 
generally validate the proposed EB method and show how well the EB 
estimates mimic the FB estimates. Then, the EB and FB estimates were 

used in site ranking analysis to determine how similar the produced 
ranks and identified hot spots were. 

5.1. Crash prediction models 

The NB and NB-L GLMs were developed for each dataset. For each 
model, only the AADT and segment length were included as contributing 
covariates. It should be noted that as the models are developed using the 
same functional form and compared using the same dataset, therefore, 
as noted earlier, the omitted variable bias would not be an issue. Also, as 
discussed before, this study aims to develop EB estimates for the ex-
pected crash values and explore whether they approximate the FB es-
timate properly. Including more variables might enhance the predictive 
models’ performance; however, it will not affect the underlying theo-
retical framework of deriving EB estimates. 

For each GLM, Full Bayesian and maximum likelihood estimates 
were calculated. We employed the MCMC method using an open- 
sourced R package, called “RJAGS” (Plummer et al., 2003), to esti-
mate the posterior of parameters. This study assumed a non-informative 
gamma, and a non-informative normal distribution for the prior distri-
bution of β’s and ϕ parameters, respectively. In total, three chains and 
60,000 iterations were set up to ensure the MCMC convergence. The first 
4,000 samples of each chain were discarded. Also, to reduce the po-
tential auto-correlation among the random draws, every third sample of 
the rest was used for estimations of unknown parameters. 

The maximum likelihood estimates are needed in order to develop 
the EB estimates. Unlike the NB distribution, the NB-L is not a part of 
natural exponential family distributions. Hence, its log-likelihood 
function is not strictly concave. Numerical approaches equipped with 
proper initial values are needed to approach the global maximum point. 
Due to the significant sensitivity observed among the NB-L partial de-
rivative equations and the initial values, a meta-heuristic genetic algo-
rithm, together with a gradient descent approach, was utilized to ensure 
convergence to the global maximum point. For this purpose, the ”GA” 
package in R (Scrucca et al., 2013) was used to solve the optimization 
problem. A total of 200 iterations with 500 initial populations were 
considered to maximize the objective function. A gradient descant 
approach was also employed in each iteration of the genetic algorithm to 
locally search for better estimates and further enhance the maximization 
process. 

The FB estimates and MLEs for the Texas and Virginia datasets for 
both Nb and NB-L GLMs are summarized in Table 2 and Table 3, 
respectively. Three performance measures, namely Deviance Informa-
tion Criteria (DIC), Mean Absolute Deviance (MAD), and Widely 
Applicable Information Criteria (WAIC) were used for model compari-
sons (Lord et al., 2021). WAIC was developed by Vehtari et al. (2017) 
and it appeared to be a robust alternative for DIC in the Bayesian 
framework (Watanabe and Opper, 2010; Khodadadi et al., 2021). All the 
performance measures showed that the NB-L models fit the data better 
than the NB models. These results were expected since both datasets 
were characterized by a large number of zeros and high skewness (the 
domain under which the NB-L model performs better than the NB). 

As indicated in Table 2 and Table 3, the signs and magnitudes of 
estimates are different across models. This issue could be accredited to 
the particular representation of the NB-L model used in this study. As 
opposed to the NB model where the mean function has a log-linear as-
sociation with covariates, the mean of the NB-L model has a non-linear 
relationship with covariates. Consequently, the magnitude and sign of 
the estimates do not necessarily represent the causal relationship be-
tween covariates and crash frequencies. This issue and its associated 
limitations are covered in the Discussion section further below. 

5.2. Expected crash values 

Using the above modeling results, we attempted to calculate both FB 
and EB expected crash values. Estimating the FB expected values in-

Table 1 
Summary Statistics of datasets.  

Dataset Variables Min Max Average Standard 
Deviation 

Texas Number of crashes 0 15 0.86 1.65 
Average 5-years AADT 

(vpd) 
43 1166 313.8 253 

Segment length 
(miles) 

0.10 4.41 0.96 0.93       

Virginia Number of crashes 0 8 2.01 2.09 
Average 5-years AADT 

(vpd) 
163 5180 694 625 

Segment length 
(miles) 

0.13 5.67 1.35 1.08  
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Table 2 
Modeling results for Virginia dataset.  

Variables   NB GLM   NB-L GLM   

FB estimate (s.d.)  MLE   FB estimate (s.d.)  MLE 

Intercept (β0)   − 3.48 (0.22)  − 3.47   7.86 (0.36)*  8.27* 
Log (AADT) (β1)   0.51 (0.03)  0.51   − 0.51(0.04)*  − 0.53* 

Length (β2)   0.57 (0.02)  0.58   − 0.60 (0.03)*  − 0.59* 
ϕ   3.94 (0.42)  3.87   75.07 (14.74)  96.63 

DIC    8301     7135  
WAIC    6859     6630  
MAD    0.89     0.86  

Log-likelihood    − 3119     − 2888  

*The estimates for the NB-L GLM do not carry information regarding the causal association of covariates and crashes (see discussion below). 

Table 3 
Modeling results for Texas dataset.  

Variables   NB GLM   NB-L GLM   

FB estimate (s.d.)  MLE   FB estimate (s.d.)  MLE 

Intercept (β0)   − 5.49 (0.12)  − 5.49   8.00 (0.28)*  7.21* 
Log (AADT) (β1)   0.80 (0.02)  0.79   − 0.73 (0.02)*  − 0.68* 

Length (β2)   0.66 (0.02)  0.66   − 0.60 (0.02)*  − 0.61* 
ϕ   1.07 (0.04)  1.07   17.83 (3.16)  10.71 

DIC    26155     22471  
WAIC    21031     20761  
MAD    0.45     0.44  

Log-likelihood    − 9023     − 8847  

*The estimates for the NB-L GLM do not carry information regarding the causal association of covariates and crashes (see discussion below). 

Fig. 1. The absolute difference between the EB and FB estimates of the expected crashes.  
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volves multiple random sampling steps, which are doable using any 
software developed for MCMC analysis. However, the MCMC analysis 
requires the model tree defined using the standard distributions. The 
Lindley distribution is not a standard distribution but can be re- 
parameterized as a two-component gamma mixture (Zamani and 
Ismail, 2010): 

∊ ∼ Lindley(θ) ≡
1

1 + θ
Gamma(2, θ) +

θ
θ + 1

Gamma(1, θ) (27) 

To calculate the EB expected crashes, we merely plugged in the MLEs 
(i.e., ϕ̂, β̂) from Table 2 and Table 3 in the EB formula developed in Eq. 
(25). The EB expected crash value for site i would be as follows: 

E(λi|yi) =
A(yi + 1)

A(yi)
(yi + 1) (28)  

where, A(yi) =
∑yi

j=0(− 1)j
(

yi
j

)
êβX+ϕ̂+j+1

(êβXi+ϕ̂+j)2 

Results from both methods were observed and compared to see 
whether EB estimates properly approximate the FB estimates. The ab-
solute difference between the estimates for the NB and NB-L models are 
plotted in Fig. 1. These violin plots show the extent to which the FB 
expected values and their approximated EB counterparts are different. 
As seen, the difference between the mean of the expected values are 
quite small for both models; this indicates that the proposed EB formula 
for the NB-L GLM can accurately approximate the FB procedure, thus 
avoiding the demanding MCMC analysis. 

However, the difference between the EB and FB expected values 
were larger for the NB-L in comparison to those of the NB model. This 
issue is fully covered in the discussion section. Even though the differ-
ence between the EB and FB estimates seem relatively larger for the NB-L 
models, the authors observed that the relative differences will not 
exceed 25% for sites with crash experiences. This indicates that the EB 
and FB estimates are close, and it is anticipated that the EB estimates will 
be adequate for safety applications. 

5.3. Application in site ranking 

The empirical results in the previous section showed that the EB 
estimates of the expected crash values are appropriate alternatives to the 
FB estimates. Both the absolute and relative differences between the EB 
and FB estimates of expected crashes were small, indicating that the EB 
estimates well approximate their FB counterparts. However, sometimes 
the order of the expected crash values is of interest rather than the 
magnitude itself. In site ranking studies, the aim is to sort the study sites 
in decreasing order of their evaluated crash risk (expected crash value). 
As a result, this study examined the application of the proposed EB 
framework for the NB-L GLM in site ranking. 

In order to assess how a ranking criterion performs, a reference 
ranking is needed as the basis for the comparison. Several studies found 
Posterior ranking criteria to be a better alternative to integer ranking 
when the model is implemented as a Bayesian framework (Laird and 
Louis, 1989; Miaou and Song, 2005; Liu and Sharma, 2018; Shen and 
Louis, 1998). Laird and Louis (1989) observed that the posterior dis-
tribution of ranks carries more information than the integer rank that is 
usually assigned to the parameter mean. The Posterior ranking criterion 
takes into account all posterior simulations for each site’s crash risk (not 
only the posterior mean), and results in a ranking for each simulation 
run. Eventually, by taking the average of the simulated ranks for each 
site, the posterior expected rank is achieved. This study assumed the 
posterior expected ranks as the reference ranks in order to compare the 
ranking criteria produced by FB and EB expected crash values for the 
NB-L model. The first 10, 20, 50, 100, 200, and 500 top ranked sites were 
identified for each ranking criterion. Table 4 shows the number of sites 
that appeared in both the ranking criteria being evaluated and the 
reference ranking (posterior expected ranks). As seen in both datasets, 

the hot spots identified by the EB approach are quite similar to those 
identified by the FB approach. Similarity of the ranks indicate that the 
proposed EB approach can be a proper alternative to the FB approach 
not only in crash prediction, but also in hotspot identification. Site 
ranking is the only safety analysis evaluated in this study; however, any 
other type of safety studies that use the long-term crash mean can benefit 
from the proposed EB method. 

6. Discussion 

Modeling results from previous works and the current study indi-
cated that compared to the traditional NB model, the NB-L model pro-
vides a superior fit when analyzing crash datasets with excess zero 
observations. Consequently, the NB-L has a better performance in 
evaluating the crash risk associated with each site. However, the NB-L 
expected values were only available using the FB approach, which 
could be difficult to compute for large datasets. This study introduced 
the EB framework to approximate the FB estimates of the NB-L model. 
Results from the previous section showed that the proposed EB frame-
work for the NB-L can properly approximate the underlying FB pro-
cedure, so it can be used for analyses that require expected crash values 
(e.g., site ranking, before-after analysis). Some interesting findings, re-
sults, and limitations are discussed below. 

As indicated in Table 2 and Table 3, neither the signs nor the mag-
nitudes of the estimated coefficients are comparable between the NB and 
NB-L models. This issue can be attributed to the way the mean function 
is structured. The NB model in this study is parameterized by its mean, μ, 
and overdispersion parameter, ϕ. The mean function is assumed to have 
a log-linear relationship with the site characteristics, (i.e., X) through 
the regression coefficients (i.e., β). As a result, the coefficients are 
directly related to the mean crashes so, their magnitude and sign carry 
information about how and to what extent each covariate affects the 
crash frequencies. However, the NB-L model is parameterized differ-
ently. Geedipally et al. (2012) introduced two different parameteriza-
tions for the NB-L GLM. The first one uses the NB formulated by mean 
and overdispersion parameter where each site-specific mean value is 
multiplied by an adjustment factor (or as indicated in the original paper, 
frailty term), ∊: 

Y ∼ NB (y; ∊μ,ϕ)∊ ∼ Lindley (θ)μ = eβX (29) 

This parameterization is easy to interpret, and given that E(Y) = μ, 
the regression coefficients are directly related to the mean response. This 
representation, however, is not available in closed form and hence, 
cannot be used in the EB framework proposed in this study. Instead, we 
used the second parameterization, which is available in closed form: 

Y ∼ NB (y; p,ϕ) − ln (p) ∼ Lindley (θ)θ = eβX (30) 

This parameterization, which follows the original NB-L parameteri-
zation discussed in Zamani and Ismail (2010), links the site character-
istics to the Lindley parameter, θ, not the mean. The mean of this 

Table 4 
Site ranking results.  

Dataset Risk 
Evaluation 

Unordered Ranked Groups 

Criteria 1–10 1–20 1–50 1–100 1–200 1–500 

Texas 

NB-L FB 10/ 
10 * 

20/ 
20 

50/ 
50 

100/ 
100 

200/ 
200 

500/ 
500 

NB-L EB 9/10 20/ 
20 

46/ 
50 

97/ 
100 

190/ 
200 

486/ 
500         

Virginia 

NB-L FB 10/ 
10 

19/ 
20 

49/ 
50 

99/ 
100 

196/ 
200 

498/ 
500 

NB-L EB 8/10 15/ 
20 

49/ 
50 

95/ 
100 

196/ 
200 

492/ 
500 

*Posterior expected ranking is the reference ranking criteria. 
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parameterization can be written as follows (Zamani and Ismail, 2010): 

E(Y) = ϕ

(
θ3

(θ + 1)(θ − 1)2
− 1

)

(31) 

As seen in the above definition, the mean response is a non-linear and 
non-invertible function of regression coefficients and overdispersion 
parameter. Consequently, the signs and magnitudes of the regression 
coefficients in the second parameterization do not necessarily show the 
causal relationship between the covariates and crash frequency. To put 
it concisely, the proposed EB framework and the NB-L representation we 
utilized in this study (indicated in Eq. 30) are only applicable when the 
expected crash values are of interest. The expected crashes can then be 
used in various safety-related studies such as hot spot identification or 
before-after analysis. However, if the goal is to determine the underlying 
relationship between the crash frequencies and contributing factors, the 
other parameterization of the NB-L model indicated in Eq.(29) should be 
employed (see Khodadadi et al. (2021b, 2012, 2019, 2016)). 

In addition, we observed that the log-likelihood function of the NB-L 
model behaves unpredictably when large-valued parameters or large 
inputs are involved. This issue can be attributed to the summation term 

existing in the NB-L closed-form expression, 
∑y

j=0

(
y
j

)

(− 1)jeβX+ϕ+j+1
(eβX+ϕ+j)2

. 

This summation part results from the following substitution, 

(1 − e− λ)
y
=
∑y

j=0

(
y
j

)

(− 1)je− λj, which was used in Zamani and Ismail 

(2010),Khodadadi et al. (2021a) to derive the pmf of the NB-L distri-
bution. This part outputs small negative values when large y’s or large- 
valued parameters are input. Consequently, proper initial values are 
required when maximizing the likelihood function to avoid large esti-
mates and negative likelihoods, and ensure valid estimates and 
inferences. 

Furthermore, a larger difference between the FB and EB expected 
values was observed in the NB-L compared to the NB model. This issue 
can be attributed to two reasons. First, the NB-L likelihood is not strictly 
concave and hence, the global optimization is not possible or very 
difficult to get. Numerical approaches are needed to approach to the 
global maximum point as much as possible which eventually lead to a 
range of local maxima and a range of estimates. Unlike in the case of the 
NB model where a single set of MLEs achieve the global maximum, in the 
NB-L model, a range of local estimates would be achieved whose accu-
racy depend of the initial values. Therefore, the MLEs and the FB esti-
mates are quite different for the NB-L model (see Table 2). This 
difference between the MLEs and FB estimate will result in the different 
EB and FB estimates of the expected values. Another potential reason 
could be the bias-variance trade-off. Due to the flexible structure of the 
NB-L model, it tends to output less-biased and hence, high-variance re-
sults. High variability of the NB-L model is mirrored in high variance of 
the expected values. 

Aside from the high-variability of the NB-L model, the absolute and 
relative differences showed negligible values. Similarity of the ranking 
from the EB and FB estimates also confirmed that the EB estimates will 
be adequate for safety applications. The proposed framework will be 
specially useful in situations where the traditional NB models are not 
flexible enough (e.g., abundance of zeros in the data or high skewness), 
or output biased results (e.g., data with low sample mean). 

7. Summary and conclusions 

Even though there is rich literature on the advanced predictive 
models in traffic safety, little has been done to extend their application 
to other roadway safety tasks. The NB-L model has been proposed for 
sparse count data modeling and, as indicated in several studies, provides 
superior performance compared to the common NB model used in traffic 
safety. However, its application has not been examined in other roadway 
safety tasks. 

Expected crash values estimated from the crash prediction models 
are the main evaluation tool in safety analysis and represent the long- 
term risk associated with a roadway entity. This study proposed an EB 
framework to approximate the underlying FB method and derive the 
expected crash values for the NB-L model. The derived expected crashes 
can be used in various safety-related studies (e.g., hot spot identification, 
before-after analysis). The results showed that the proposed EB frame-
work is able to estimate expected crashes with comparable precision to 
the FB estimate but with much lower computational costs. The proposed 
framework was further examined in site ranking analysis. We observed 
that ranks produced by the EB estimates were similar to those of FB 
estimates, indicating that the proposed framework can be safely 
employed in other highway safety tasks such as hot spot identification 
analysis. 

The EB approach introduced in this study can be utilized in any type 
of analysis that requires access to the expected crash values. The 
resulting EB expected crashes take advantage of the probabilistic 
structure of the FB paradigm while avoiding its time-consuming 
computational efforts. For future studies, a similar framework as intro-
duced in this study can be used to develop an EB method for other 
advanced predictive models in traffic safety. Also, further work should 
be performed to validate the application of the framework in other 
safety-related analyses such as before-after analysis. 
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